Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(12): 5169-5192, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38036466

RESUMO

The biopolymer lignin, which is heterogeneous and abundant, is usually present in plant cell walls and gives them rigidity and strength. As a byproduct of the wood, paper, and pulp manufacturing industry, lignin ranks as the second most prevalent biopolymer worldwide, following cellulose. This review paper explores the extraction, modification, and prospective applications of lignin in various industries, including the enhancement of thermosetting and thermoplastic polymers, biomedical applications such as vanillin production, fuel development, carbon fiber composites, and the creation of nanomaterials for food packaging and drug delivery. The structural characteristics of lignin remain undefined due to its origin, separation, and fragmentation processes. This comprehensive overview encompasses state-of-the-art techniques, potential applications, diverse extraction methods, chemical modifications, carbon fiber utilization, and the extraction of vanillin. Moreover, the review focuses on the utilization of lignin-modified polymer blends across multiple manufacturing sectors, providing insights into the advantages and limitations of this innovative approach for the development of environmentally friendly materials.


Assuntos
Lignina , Polímeros , Lignina/química , Polímeros/química , Fibra de Carbono , Biopolímeros
2.
Nanoscale ; 15(19): 8870-8880, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37128946

RESUMO

Titanium carbide (Ti3C2Tx) MXenes have been regarded as important functional fillers of organic coatings for anticorrosion. Various MXene-based composite coatings have been fabricated and investigated via a material modification strategy, enhancing the corrosion protection performance. However, the anticorrosion reliabilities of MXene-based composite coatings were thwarted by their disordered interfaces. Significantly, few reports discuss the influence of interface structures on the protection performance for the coatings. In this work, we confirm the exceptional anticorrosion performance of ordered MXene/epoxy composite (OMC) coatings via a reasonable interface strategy. The ordered interfacial structure can synergistically enhance the coating compactness while maximizing the infiltration paths of aggressive species. The obtained OMC coating is compact and shows a high impedance of 6.84 × 109 Ohm cm2, a high coating resistance of 6.08 × 109 Ohm cm2, an extremely low porosity of 0.77% and an extremely low breakpoint frequency of 0.18 Hz, at a low filler content of 0.5 wt%. Besides, the concept of specific impedance (SZ) is proposed to attest the superiority of the OMC coating. Furthermore, the galvanic corrosion effects of MXenes in epoxy coatings are systematically explored and confirmed for the first time. The highly ordered structure eliminates the corrosion promotion activity of the conductive MXene, and thus, endows the superior anticorrosion stability for the coating. This work provides an inspiration for constructing outstanding long-term MXene-based anticorrosion coatings via regulating the coating interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...